Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics.
نویسندگان
چکیده
Mechanism-based ecological models are a valuable tool for understanding the drivers of complex ecological systems and for making informed resource-management decisions. However, inaccurate conclusions can be drawn from models with a large degree of uncertainty around multiple parameter estimates if uncertainty is ignored. This is especially true in nonlinear systems with multiple interacting variables. We addressed these issues for a mechanism-based, demographic model of Populus fremontii (Fremont cottonwood), the dominant riparian tree species along southwestern U.S. rivers. Many cottonwood populations have declined following widespread floodplain conversion and flow regulation. As a result, accurate predictive models are needed to analyze effects of future climate change and water management decisions. To quantify effects of parameter uncertainty, we developed an analytical approach that combines global sensitivity analysis (GSA) with classification and regression trees (CART) and Random Forest, a bootstrapping CART method. We used GSA to quantify the interacting effects of the full range of uncertainty around all parameter estimates, Random Forest to rank parameters according to their total effect on model predictions, and CART to identify higher-order interactions. GSA simulations yielded a wide range of predictions, including annual germination frequency of 10-100%, annual first-year survival frequency of 0-50%, and patch occupancy of 0-100%. This variance was explained primarily by complex interactions among abiotic parameters including capillary fringe height, stage-discharge relationship, and floodplain accretion rate, which interacted with biotic factors to affect survival. Model precision was primarily influenced by well-studied parameter estimates with minimal associated uncertainty and was virtually unaffected by parameter estimates for which there are no available empirical data and thus a large degree of uncertainty. Therefore, research to improve model predictions should not always focus on the least-studied parameters, but rather those to which model predictions are most sensitive. We advocate the combined use of global sensitivity analysis, CART, and Random Forest to: (1) prioritize research efforts by ranking variable importance; (2) efficiently improve models by focusing on the most important parameters; and (3) illuminate complex model properties including nonlinear interactions. We present an analytical framework that can be applied to any model with multiple uncertain parameter estimates.
منابع مشابه
Hydrologic Regimes and Riparian Forests: a Structured Population Model for Cottonwood
Riparian cottonwood (Populus deltoides) forests form the one of the most extensive deciduous forest ecosystems in arid regions of the western United States. However, cottonwood populations are threatened by flow alteration and channel degradation caused by dams, water diversions, and groundwater pumping. We developed a stochastic, densitydependent, population model to (1) consolidate informatio...
متن کاملCicada emergence in Southwestern riparian forest: influences of wildfire and vegetation composition.
Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown. Because cicadas are consumed by...
متن کاملEcophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.
Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the d...
متن کاملPlanning and Design of Urban Sustainable Riparian Park (Case Study: Kan River- Valley)
One of the most important natural factors and critical facilities in Tehran is presence of AlborzSlopes River-Valleys which have been considered as natural tourist places for citizens since a long time ago, especiallyin hot summers and play effective role in creating a balance between manmade and natural spaces. Importance ofthese river-valleys as ecological pathways is enhanced with the increa...
متن کاملComparison of litter dynamics in native and exotic riparian vegetation along the Middle Rio Grande of central New Mexico, U.S.A
Exotic plants and river regulation have changed riparian ecosystems throughout the south-western U.S. We compared litter dynamics at sites dominated by native cottonwoods or exotic saltcedar in the Middle Rio Grande Valley of central New Mexico. Litter production was greater at cottonwood sites and may have increased after experimental flooding in cottonwood but not in saltcedar. Decomposition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2011